Oblouková lampa je výhodnější než žárovka. Jak to viděli před sto lety

aktualizováno 
Rozmach elektrického osvětlení na přelomu 19. a 20. století znamenal pro veřejnost, která s elektřinou měla málo zkušeností, příležitost i dilema. Není divu, že se ptala, o kolik jsou elektrické žárovky efektivnější než plyn či jak světlo v ní vlastně vzniká. Takto se tehdy pokusili odpovědět novináři:

Veliký elektrický reflektor o svítivosti 80 000 svíček na světové výstavě v Paříži, sestrojený Akciovou společností pro elektřinu, dříve Schuckert a spol. v Norimberku (Věda a práce, 1901) | foto: Bejvávalo.cz (Věda a práce, 1901)

Počet umělých zdrojů světelných, jenž ještě před sto lety omezen byl na louče dřevěné a některé tuky, stoupl značně v tomto století, a metou všech jest docíliti největší účinnosti světelné při nejmenším nákladě udržování.

Důležito jest klásti stejný důraz na oba tyto faktory, neboť výhodnost zdroje světelného jest vyjádřena součinem obou. Jest patrno, že i pramen světelný vyžadující většího nákladu ke vzniku a udržování světla, může býti lacinějším a tedy i výhodnějším než zdroj potřebující menšího nákladu, je-li účinnost jeho světelná poměrně větší a naopak.

Příčina světla, všech zdrojů umělých, používaných k praktickému osvětlování, jest táž jako u přirozeného zdroje - slunce. Jest to teplo, jež se mění v energii světelnou, vznikajíc samo bud dějem lučebným - hořením, neb proudem elektrickým. Jest tedy světlo energií, která se rodí z ekvivalentního množství energie tepelné. Výměna obou těchto energií děje se prostřednictvím tělesa, jež teplem se uvádí ve stav žhavý. Bude tedy výhodnost zdroje tím větší, čím dokonalejší a úplnější bude tato proměna, čím menší bude ztráta na energii.

Definujeme tedy účinnost světelnou jako poměr užitečné energie světelné k energii spotřebované. Na čem jest energie světelná, čili jinak řečeno svítivost závislá, poznáme snadno, pozorujeme-li spektrum (vidmo) tělesa žhoucího.

První podmínkou jest, aby vidmo bylo nepřetržité; třeba tedy vyloučiti plyny z těles žhavých. Čím více pak barev spektrum obsahuje, tím bude světlost zdroje větší. Ohříváme-li těleso pevné, žhavění schopné, sálá nejdříve teplo, a na spektru neviditelném pouhému oku lze zjistiti paprsky infračervené, či tepelné.

Stoupá-li teplota na 300° C., těleso rozžhaví se do červena a vidmo vykazuje paprsky červené, k nimž zvýšením teploty se druží postupně paprsky oranžové, žluté, zelené, modré a na konec při bílém žáru asi kolem 2000° C. i fialové. Tím obdrželi jsme tedy vidma úplného. Roste-li i nyní ještě teplota, vznikají jen paprsky tmavé, ultrafialové, vykazující hlavně účinky chemické.

Světlost stoupá tedy s počtem barev vidmových od jisté teploty až do maxima, na kterém setrvá, roste-li teplota, i dále. Přes toto maximum nepřejde se při užívaných zdrojích; i lze souditi, že svítivost zdroje bude tím větší, čím vyšší bude jeho teplota.

Pozorujme nyní, jak požadavku tomuto různé světelné zdroje vyhovují.

U lamp petrolejových, plynových a svíček, při nichž tekuté, plynné neb pevné uhlohydráty se spalují, jest látkou žhoucí uhlík. Patrno, že hoření při těchto zdrojích jest nedokonalé, neboť část svítiva jakožto pevný uhlík se vylučuje a žhaví. Teplota takovéhoto zdroje jest nízká, a tedy svítivost a s ní i účinnost malá.

Aby se docílilo vyšší teploty, muselo by hoření býti dokonalé. Poněvadž však plamen takový jest nesvítivý, třeba použiti jakéhosi tělesa, jež se v plameni do žhavení uvádí. Jest to obyčejně Auerova punčoška, složená z kysličníků vzácných zemin, jako cirkonia, thoria, ceria, erbia, yttria, lanthanu, jež snesou vysoký žár a dávají téměř úplné spektrum, pročež i barva světla jejich jest bílá.

Octli jsme se tu u žárového světla plynového, lihového a petrolejového. U těchto zdrojů při téže, ba menší ještě energii spotřebované, jež representována jest množstvím spáleného svítiva, jest svítivost a tudíž i účinnost větší; i jsou tyto zdroje při témž nákladu výhodnější.

Povšimněme si nyní světla elektrického. Oblouk Davyho, mající nejvyšší teplotu 2500°- 3500° C., dává spektrum úplné, a jelikož ztráty energie odporem ohmovým a polarisací jsou celkem malé, jest zdrojem nejúčinnějším, a poněvadž také náklad potřebný k udržování jest nejmenší, i nejvýhodnějším zdrojem světelným. Nevýhodou jeho jest, že velká intensita světelná jest na malou jen plochu soustředěna, pročež k osvětlování příbytků málo se hodí.

Při žárovém světle elektrickém, kde se žhaví vlákno uhelné, jehož svítivost jest o něco větší než plynu, třeba s nákladem počítati, a tu výhodnost kloní se vždy na stranu jejich.

Kvůli snazšímu porozumění uvádím tato data:

Svítivost světelných zdrojů udávaná ve zdánlivě historické jednotce ‚svíčka‘ se používá i v dnešní době. Jen se používá označení Kandela (symbol cd) vycházející z anglického názvu jednotky candela. Obyčejná žárovka 100 W má svítivost přibližně 120 cd; běžná indikační světelná (LED) dioda jen asi 0,5 cd.

Spálíme-li 1 m³ svítiplynu za hodinu v hořácích, obdržíme 112 normálních  svíček. Spálíme-li totéž množství v plynovém motoru zatíženém dynamem, dá práci 1 HP.
Generator vydá proud, jenž může napájeti 10 žárových lamp o 16 svíčkách, nebo jednu lampu obloukovou o 1000 svíčkách, počítajíc v to již ztráty rozváděním povstalé.

Jest tedy světlo obloukové devětkrát, žárové 1,4krát výhodnější než obyčejné světlo plynové. Ovšem užijeme-li jako motoru stroje parního, vodního kola neb turbíny, sníží se ještě náklad, a tedy stoupne výhodnost.

Při posuzování výhodnosti žárovek třeba zřetel bráti nejen na hořejší dva činitele, nýbrž ještě na třetí, jímž jest trvanlivost jejich.

Ta žárovka jest výhodnější, jež při téže svítivosti má delší trvání. Proto udává továrna vždy svítivost, při níž garantuje jisté trvání. Zvýší-li se světlost sesílením intensity proudové a tedy stoupnutím teploty, přepálí se vlákno uhelné dříve, stává se trvanlivost menší.

Aby bylo lze zvýšiti teplotu bez újmy trvalosti, bylo třeba upustiti od uhelného vlákna, neboť uhlík vysokou teplotou mění se v plyn, a použiti látek, jež snesou vyšší žár. Užívá se k tomu cíli výše uvedených zemin, a obtíž, která nevodivostí jejich při nízké teplotě se naskytuje, odstraňuje se tím, že pokrývají dobrého vodiče, platinové neb uhelné vlákno, jež nejdříve se rozžhavuje. K těmto žárovkám náleží nově konstruovaná žárovka punčošková.

K doplnění celku dlužno ještě uvésti světlo studené, vznikající výbojem elektrickým ve zředěných plynech. Žárovky takové sestrojil Tesla, Arons, Moore a j., a byla jimi i jedna síň optického paláce na světové výstavě v Paříži osvětlena. Leč světlo toto, jsouc teprve ve zrodu svém, nemá pro malou intensitu svoji dosud praktického významu. Totéž platí i o světle vznikajícím fosforescencí a fluorescencí.

Shrneme-li v krátký úsudek, co v hořejších řádcích o výhodnosti zdrojů pověděno bylo, plyne, že dosud nejvýhodnějším zdrojem světelným jest lampa oblouková, po níž ostatní následují asi v této řadě: žárovka elektrická, žárové světlo plynové, petrolejové, lihové, lampa acetylenová, plynová, petrolejová, olejová a svíčky.

Ovšem uvažovali jsme výhodnost jen se stanoviska hospodářského; při instalaci však bývá třeba hleděti ještě na jiné okolnosti, hlavně místní, na přípustnost toho kterého zdroje, kteréž okolnosti bývají často rozhodujícími.

V. Felber (Věda a práce, 1901)

Text byl původně digitalizován pro server Bejvávalo.cz, kde najdete i další historické texty z různých oborů. 

Autor:
 

Nejčtenější

Sexuálně nejvýkonnější vyzvědače přebrali československé rozvědce Sověti

Býval agent československé rozvědky v USA Karel Köcher

Československým komunistickým rozvědčíkům se ve špionáži proti Spojeným státům dlouho nedařilo. Nakonec ale zaznamenali...

Našel na půdě 35 let starý Apple II, zapnul ho a dohrál uloženou hru

Spoustu let ležel na půdě, po zapnutí funguje „jako zamlada“.

Newyorský učitel našel u rodičů na půdě starý počítač Apple II. Zkusil ho zapnout a překvapivě mohl pokračovat ve hře,...

Lokální předpověď počasí se razantně zpřesní, možná pomáhá i váš telefon

GRAF

Nejpřesnější lokální předpovědi počasí dnes nabízejí aplikace v našich telefonech - i proto, že s nimi samy pomáhají....

V Perském zálivu spustili největší baterii světa. Virtuální a bez lithia

Sodíko-sírové bateriové systémy japonské firmy NGK. Systém, který se vejde do...

Ve Spojených arabských emirátech byla připojena do sítě největší „virtuální“ baterie světa s obřím výkonem a úctyhodnou...

Severní magnetický pól se vydal na cesty. Co když doputuje až na jih?

Posun severního magnetického pólu

Naši planetu čeká přehození magnetických pólů. Nebude to zřejmě brzy, proč k tomu ovšem vůbec dojde a co může změna...

Další z rubriky

V zazděné kapli zpovědníka krále objevili vědci i další kosti neznámé osoby

Vizuální kontrola utajené hrobky zpovědníka krále Přemysla Otakara II. kamerou...

Jindřich Librarius byl zpovědníkem Přemysla Otakara II. a tak významnou osobností své doby, že v zápise o jeho úmrtí je...

Gigantický ještěr se žraločími zuby mohl žít a lovit ve smečkách

Rekonstruované kostry tří jedinců druhu Mapusaurus roseae v různých věkových...

Souboj titánů, tak mohlo vypadat zápolení smečky obřích teropodů druhu Mapusaurus roseae s kolosy jménem ...

Severní magnetický pól se vydal na cesty. Co když doputuje až na jih?

Posun severního magnetického pólu

Naši planetu čeká přehození magnetických pólů. Nebude to zřejmě brzy, proč k tomu ovšem vůbec dojde a co může změna...

Najdete na iDNES.cz