Sobota 8. srpna 2020, svátek má Soběslav
  • schránka
  • Přihlásit Můj účet
  • Sobota 8. srpna 2020 Soběslav

Vyfotil jeden jediný atom. Stačil běžný foťák a složitá past

aktualizováno 
Atomy jsou pouhým okem neviditelné, to víme všichni. Ale pokud je správně nasvítíte a připravíte pro ně vhodné „pódium“, situace se trochu změní.

Snímek zachycující jediný atom stroncia v tzv. iontové pasti. Atom je uprostřed mezery mezi dvěma hroty ve středu obrázku. Pro představu, skutečná délka mezery je cca 2,3 milimetru. | foto: David Nadlinger, Oxford Univesity

Vyhlašování soutěže o nejlepší vědeckou fotografii britské grantové ceny EPSRC (viz Wikipedie) nesledují obvykle agenturní zpravodajové se zatajeným dechem. Ovšem vítězná fotografie letos v únoru vyhlášeného ročníku zaujala a rychle se objevila v médiích po celém světě.

Pořídil ji postgraduální student David Nadlinger z Oxfordské univerzity a řekněme rovnou, že neukazuje nic převratného. Slibuje naopak něco, co si dokáže představit každý laik: atom viditelný očima - či přesněji obyčejným fotoaparátem. (Autor použil Canon 5D Mk II, objektiv EF 50mm f/1.8.)

Najdete ho v samotném středu obrázku. Tečka, kterou vidíte, je skutečně odraz světla od jediného atomu stroncia ve zhruba dvoumilimetrové mezeře mezi hroty „pasti“, která ho drží na místě. Jak je to možné?

Řekněme rovnou pro jistotu, že jde vlastně o iluzi. Stroncium samozřejmě nemá atomy velké tak, aby byly vidět pouhým okem. Na poměry atomárního světa tedy rozhodně nejsou malé, ale i tak se jejich velikost měří na zlomky nanometrů (cca 0,251x10-9 metru), je zhruba desettisíckrát menší než nejmenší objekt, který reálně může lidské oko zahlédnout.

Detail snímku jediného atomu stroncia v tzv. iontové pasti.

Atom v centru obrázku je osvětlený modrým laserovým světlem a my vidíme záři odráženého světla. Kterého je ovšem málo, a proto byl snímek pořízen s 30sekundovou expozicí. Je to podobné jako u hvězd na obloze: i ty jsou ve skutečnosti vlastně menší než obraz, který vytváří naše oko a mozek. 

Jak chytit atom do pasti

Z vědeckého hlediska snímek neobsahuje žádné překvapivé informace a nic nového z něj nejde vyčíst. Ale to neznamená, že zachycuje nesmyslný pokus. Zachycení jednotlivých atomů je velmi zajímavá technika, díky které se o jejich chování a vlastnostech můžeme dozvědět spoustu zajímavého.

Už několik desetiletí se k tomu v laboratořích používají pasti tvořené elektromagnetickým polem ve vakuové komoře. Samozřejmě past nefunguje pro neutrální atomy, ale výhradně na ionty. Jejich „výroba“ probíhá ozařováním proudu neutrálních atomů stroncia laserem. Atom v podstatě drží na místě kombinace polí vytvářených „hroty“ (elektrodami) po stranách snímku a především elektrod nad a pod ním. Tedy, abych nebyli úplně nepřesní: atomy samozřejmě nestojí, v podstatě „vibrují“ zhruba na stejném místě. 

Grafické znázornění tvaru elektromagnetického pole, který vězní atomy v iontové...

Grafické znázornění tvaru elektromagnetického pole, který vězní atomy v iontové pasti. Elektrody (celkem čtyři, jedna není příliš vidět) jsou znázorněné jako červené plochy. Atom „sedí“ zhruba v místě vyznačeném červeným kroužkem. Na první pohled to nevypadá jako příliš stabilní poloha, ale ve skutečnosti pole velmi rychle osciluje - přepíná se s frekvencí několika megahertzů. V tu chvíli už „sedlo“, kde se atom nachází, je pro něj stabilním útočištěm. Úplně stejný jev byste mohli vidět v praxi s míčem a jezdeckým sedlem. Pokud sedlo stojí, míče na něj nepostaví. Pokud byste ho ovšem správně roztočili kolem středu, míč se na něm udrží. Pokud nevěříte, najděte si na YouTube třeba výraz „Rotating Saddle“. A ještě dodejme, že dvě boční elektrody, které na snímku nejsou, pracují se stejnoměrným napětím, jsou to v podstatě takové „špunty“ na obou koncích pasti.

Světlo, které se na atomu odráží, a díky kterému ho můžeme vidět, dodává hustá síť modrých laserů (vlnová délka je přesně 397 nanometrů). Ty neslouží v pasti k osvětlování, primárně mají za účel zachycené atomy zchladit na teploty z laického pohledu v podstatě rovné absolutní nule. To je nadále „zklidní“ (sníží jejich kinetickou energii), aby bylo možné pak s atomy manipulovat, například pro potřeby výzkumu kvantových výpočetních postupů atp.

Chlazení atomů laserem je technicky velmi komplikovaná záležitost, která vyžaduje nejen chytrý přístup, ale také extrémní pečlivost a přesnost. Zachycené ionty přicházejí o energii při srážkách s fotony laserového světla - velmi podobně jako vy přijdete o energii, když pro vás v běhu někdo hodí fotbalový míč. Jeden vás nezpomalí moc, ale když jich bude dost, udrží vás na místě. 

Frekvence laseru musí být naprosto přesně „vyladěna“, a to s přesností na jednu stotisícinu procenta. Jinak foton atomem proletí bez efektu.

Ovšem přesně naladit rezonanční frekvenci iontu, který chcete zachytit, nestačí. Objevuje se totiž jiný problém: pokud foton poletí proti atomu ve chvíli, kdy ten se pohne opačným směrem, srážka atom zpomalí (a ochladí). Ale co když se atom zrovna pohne opačným směrem, směrem od laseru? V tu chvíli ho přece srážka urychlí...

Protože směr pohybu atomu v danou chvíli nejde předpovídat, zdá se to jako neřešitelný problém. Řešení ovšem samozřejmě existuje a je jím využití tzv. Dopplerova jevu. Ten říká, že frekvence záření se mění podle směru, kterým se při pozorování pohybujete. Jinými slovy: když se dostatečně rychle blížíte ke zdroji světla/zvuku, bude vypadat/znít jinak, než když pojedete (znovu dostatečně rychle, aby byl efekt dost výrazný) směrem od něj. Jedno velmi jednoduché přirovnání říká, že je to jako s auty na dálnici: i když je aut v obou směrech stejně, cestou minete více aut v protisměru než v tom vašem. Kdybyste ale stáli na mostě nad dálnicí, viděli byste jich stejně.

Laser je tak vyladěný těsně pod rezonanční frekvenci zachyceného iontu (tedy v případě snímku stroncia). Iont ho tak pohltí jen v případě, že se zrovna pohybuje proti proudu laserových fotonů a frekvence laseru se z jeho hlediska zvýší. Jinak ho bude ignorovat.

Samozřejmě v praxi to ještě podstatně složitější než na papíře. Naučit se postavit a správně provozovat iontovou past s téměř dokonalým vakuem, chlazením na extrémně nízké teploty a správně nastavenou laserovou sítí není nic triviálního. Ale když už se vám to podaří, můžete vyfotit i světlo odrážející se od jednoho jediného atomu.

Autor:

Přechod na DVB-T2

Od 27. 11. probíhá postupný přechod na vysílací standard DVB-T2. Kvůli koronavirové pandemii vláda rozhodla o odložení zbývajících přechodů na vysílání DVB-T2. Diváci si tak musí pořídit televizi s podporou kódování H.265 (HEVC) nebo starší televizi doplnit vhodným set-top boxem.

  • Nejčtenější

Díky, že létáte se SpaceX. Loď Crew Dragon úspěšně dopadla do moře

Američtí astronauti Robert Behnken a Douglas Hurley úspěšně absolvovali nedělní návrat z Mezinárodní vesmírné stanice...

I Jižní Korea měla své Techtle Mechtle, poradila si jinak než Česko

Jak vypadá vyšetřování velkého ohniska kolem nočního klubu v zemi, kde „chytrá karanténa“ opravdu funguje. Jižní Korea...

Jedna pandemie nestačí. V USA se šíří zákeřná „králičí ebola“

Na jihozápadě USA se šíří mezi domestikovanými i divokými králíky nákaza virem, jehož účinky připomínají lidskou...

Svět je čím dál zelenější. Česko v současnosti míří opačným směrem

Na planetě Zemi v posledních desetiletích přibývá zeleně. Neplatí to však pro všechny státy. Česko bohužel představuje...

{NADPIS reklamního článku dlouhý přes dva řádky}

{POPISEK reklamního článku, také dlouhý přes dva a možná dokonce až tři řádky, končící na tři tečky...}

Dusičnan amonný zabíjel mnohokrát. Ovšem mnohem více životů zachránil

Výbuch v Bejrútu nebyl ani zdaleka jediným případem, kdy dusičnan amonný způsobil katastrofu. Některé z nich byly...

Biolog Komárek: Jsme účastníky největšího sociologického experimentu všech dob

Premium Měsíce trvající pandemie nám převrátila životy naruby. Známý biolog, filozof a autor dvou desítek odborných knih a tří...

Brzy dospěju do bodu, kdy si účet na Facebooku zruším, říká Lucie Výborná

Premium „Je to hra. Hra, která by měla být přínosná, užitečná, inspirativní,“ říká o své práci moderátorka Českého rozhlasu...

Proč koronavirus už téměř nezabíjí. Vytratí se, nebo se vrátí ještě silnější?

Premium Koronavirus je záhadný. Nečitelný. I když ho zkoumají ti nejchytřejší lidé, pořád o něm víme málo. Chová se jinak. Je...

  • Další z rubriky

Pojďte se dnes podívat do největšího urychlovače. Pivo si vezměte vlastní

V Praze měla v těchto dnech probíhat konference částicových fyziků ICHEP, pravidelné největší setkání vědců z oboru....

Který dinosaurus byl první? Na stopu přivedl vědce slezský ještěr

Kterým druhem a kdy začala dlouhá vláda dinosaurů? Důležité informace o prvních dinosaurech přinesl nález uskutečněný...

Pro rizikové pacienty chřipkové vakcíny mám, další nebudou, říká lékař

Podzimu se obávám, nevím, jak se podaří vyřešit souběh běžných onemocnění a nákazy virem SARS-CoV-2, říká v rozhovoru...

Byli dinosauři rozenými sprintery? Vědci se stále nemohou dohodnout

Jak rychle se dokázali pohybovat dinosauři? Odhady a hypotézy vědců se měnily s rychlostí, kterou by jim možná i...

Škoda dostane šéfa s úkolem zabránit, aby značka dotírala na VW a Audi

„Není nám k ničemu, když se Škoda vyvíjí ke třetí prémiové značce v rámci koncernu,“ prohlásil v rozhovoru publikovaném...

Zemřela manželka Jiřího Krampola, měla dlouhodobé zdravotní problémy

Ve věku 59 let zemřela Hana Krampolová, manželka herce Jiřího Krampola. Dlouhodobě se potýkala se zdravotními problémy.

Díky, že létáte se SpaceX. Loď Crew Dragon úspěšně dopadla do moře

Američtí astronauti Robert Behnken a Douglas Hurley úspěšně absolvovali nedělní návrat z Mezinárodní vesmírné stanice...

Šéf Pirátů Ivan Bartoš je tatínkem. Miminku dali s manželkou neobvyklé jméno

Předsedovi Pirátů Ivanu Bartošovi (40) a jeho ženě Lydii (37) se v úterý večer narodil syn. Novopečený tatínek se s...

Jaromír Jágr poprvé ukázal na sociálních sítích novou přítelkyni

Hokejista Jaromír Jágr (48) a modelka Dominika Branišová (26) už několik týdnů tvoří pár. Absolvovali spolu několik...